Ramsey-Type Results for Path Covers and Path Partitions
نویسندگان
چکیده
A family $\mathcal{P}$ of subgraphs $G$ is called a path cover (resp. partition) if $\bigcup _{P\in \mathcal{P}}V(P)=V(G)$ $\dot\bigcup \mathcal{P}}V(P)=V(G)$) and every element path. The minimum cardinality denoted by ${\rm pc}(G)$ pp}(G)$). In this paper, we characterize the forbidden subgraph conditions assuring us that (or pp}(G)$) bounded constant. Our main results introduce new Ramsey-type problem.
منابع مشابه
Path Partitions, Cycle Covers and Integer Decomposition
A polyhedron P has the integer decomposition property, if every integer vector in kP is the sum of k integer vectors in P . We explain that the projections of polyhedra defined by totally unimodular constraint matrices have the integer decomposition property, in order to deduce the same property for coflow polyhedra defined by Cameron and Edmonds. We then apply this result to the convex hull of...
متن کاملPath decompositions and perfect path double covers
We consider edge-decompositions of regular graphs into isomorphic paths. An m-PPD (perfect path decomposition) is a decomposition of a graph into paths of length m such that every vertex is an end of exactly two paths. An m-PPDC (perfect path double cover) is a covering of the edges by paths of length m such that every edge is covered exactly two times and every vertex is an end of exactly two ...
متن کاملStability of the path-path Ramsey number
Here we prove a stability version of a Ramsey-type Theorem for paths. Thus in any 2-coloring of the edges of the complete graph Kn we can either find a monochromatic path substantially longer than 2n/3, or the coloring is close to the extremal coloring.
متن کاملPath-kipas Ramsey numbers
For two given graphs F and H, the Ramsey number R(F,H) is the smallest positive integer p such that for every graph G on p vertices the following holds: either G contains F as a subgraph or the complement of G contains H as a subgraph. In this paper, we study the Ramsey numbers R(Pn, K̂m), where Pn is a path on n vertices and K̂m is the graph obtained from the join of K1 and Pm. We determine the ...
متن کاملPath-fan Ramsey numbers
For two given graphs G and H , the Ramsey number R(G, H) is the smallest positive integer p such that for every graph F on p vertices the following holds: either F contains G as a subgraph or the complement of F contains H as a subgraph. In this paper, we study the Ramsey numbers R(Pn, Fm), where Pn is a path on n vertices and Fm is the graph obtained from m disjoint triangles by identifying pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Combinatorics
سال: 2022
ISSN: ['1077-8926', '1097-1440']
DOI: https://doi.org/10.37236/10639